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Abstract: Computing the gaussian likelihood for a nonstationary state-space model is a 

difficult problem which has been tackled by the literature using two main strategies: 

data transformation and diffuse likelihood. The data transformation approach is 

cumbersome, as it requires nonstandard filtering. On the other hand, in some nontrivial 

cases the diffuse likelihood value depends on the scale of the diffuse states, so one can 

obtain different likelihood values corresponding to different observationally equivalent 

models. In this paper we discuss the properties of the minimally-conditioned likelihood 

function, as well as two efficient methods to compute its terms with computational 

advantages for specific models. Three convenient features of the minimally-conditioned 

likelihood are: (a) it can be computed with standard Kalman filters, (b) it is scale-free, 

and (c) its values are coherent with those resulting from differencing, being this the 

most popular approach to deal with nonstationary data. 

 

Keywords: State-space models; Conditional likelihood; Diffuse likelihood; Diffuse 

initial conditions; Kalman filter; Nonstationarity 

 

 

† Departamento de Fundamentos del Análisis Económico II. Facultad de Ciencias Económicas. Campus 
de Somosaguas. 28223 Madrid (SPAIN). Email: jcasalsc@cajamadrid.es 

†† Departamento de Fundamentos del Análisis Económico II. Facultad de Ciencias Económicas. Campus 
de Somosaguas. 28223 Madrid (SPAIN). Email: sotoca@ccee.ucm.es 

††† Corresponding author. Departamento de Fundamentos del Análisis Económico II. Facultad de 
Ciencias Económicas. Campus de Somosaguas. 28223 Madrid (SPAIN). Email: mjerez@ccee.ucm.es, tel: 
(+34) 91 394 23 61, fax: (+34) 91 394 25 91.  



2 
 

1. Introduction 

The most popular approach to deal with nonstationary data consists of 

differencing the data to induce stationarity, being this transformation useful both, to 

specify a model and to compute its gaussian likelihood. This approach is simple and 

suitable in many cases. Not so much in many others such as, e.g., when one wants to 

estimate non-multiplicative models, such as time-varying parameter regressions or 

structural time series models (Harvey, 1989). Also, it results in unnecessary data losses 

when the sample includes missing values or if the model has cointegration constraints 

(Mauricio, 2006). Finally, for many practical purposes such as, e.g., forecasting or 

signal extraction, it is more convenient working with original instead of differenced 

data. In all these cases, it would be interesting to estimate the nonstationary model. 

Computing the likelihood for a model with unit roots is a difficult problem 

which has been tackled by the state-space literature using two main strategies: data 

transformation and diffuse initialization. 

The most representative work in the data transformation approach is Ansley and 

Kohn (1985), hereafter AK, who proposed a sophisticated data transformation that 

cancels the nonstationary components of the model. As AK recognize, their approach 

has two shortcomings: it needs a complex and nonstandard filtering and requires the 

data transformation to be independent of the parameter values. This requirement is not 

fulfilled, for example, when one wants to estimate structural time series models 

(Harvey, 1989). The AK approach has been further developed in many relevant works 

(Kohn and Ansley, 1986; Ansley and Kohn, 1990, in the univariate case; Bell and 

Hillmer, 1991; Gomez and Maravall 1994), but none of them addressed the two 

preciously mentioned issues. 

The diffuse likelihood approach considers an initial state where some 

components could have an arbitrarily large covariance. Building on this idea, De Jong 
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(1991) defined the diffuse likelihood function and proved that it is a proper likelihood, 

as it is based in the data transformation that makes the data invariant to the initial 

diffuse state. In comparison with the AK algorithm, the main advantage of De Jong 

(1991) proposal was that it used a standard filter, augmented with the propagation of a 

vector and a matrix, having each as many rows as the diffuse state vector. 

Following also the diffuse initialization strategy, Koopman (1997) proposed 

decomposing the initial state, x1 , as: 

  = +x    A B1 h d                  (1.1) 

where the term Ah  corresponds to the stationary structure, where A is a fixed-

coefficients matrix and ( ) 0 I   N   ,h . On the other hand, Bd  corresponds to the diffuse 

states, with ( )k  0 I   N   ,d  and k  ¥ . Finally B is a coefficient matrix that must be 

determined heuristically in each case. 

  Koopman (1997) computes then the likelihood by running two different filters, 

which propagate the covariances resulting from the diffuse and stationary subsystems 

respectively. Both filters collapse to a unique standard Kalman Filter (hereafter, KF) 

when the number of recursions is sufficient to eliminate the dependence on k . This 

algorithm has two weak points. First, the size of the sample required to eliminate this 

dependence is known only when the model is univariate and there are no missing 

values; in other cases it must be determined heuristically. Second, the double filtering 

procedure requires using generalized inverses, being these inverses complex, unstable 

and computationally expensive. 

 In this work we present the computation and theoretical advantages of the 

minimally conditioned likelihood for a state-space model. This approach has three clear 

benefits. First, in comparison with the data transformation alternatives, it only requires 

standard filtering. Among other advantages, this means that our procedures can cope 

with missing data and cointegration constraints. Second it is scale-invariant, while in 
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some cases the diffuse likelihood depends on the scale of the diffuse states. This is 

illustrated by the examples in sub-sections 2.1 and 5.2, which show that there could be 

different diffuse likelihood values corresponding to observationally equivalent models. 

Third, our method provides likelihood values identical to those resulting from 

differencing when both approaches can be compared. 

The minimally conditioned likelihood function can be efficiently computed by 

two different but equivalent methods that we call: “State Decomposition” (SD) and 

“Column Deletion” (CD), respectively. 

Section 3 describes the SD method, which is based on some ideas due to De 

Jong (1988). It builds on a decomposition of the conditional likelihood which separates 

the effects of both, the diffuse and non-diffuse states. Under these conditions, one can 

compute the likelihood by applying a KF with null initial conditions to the sample and 

then correcting the effect of the arbitrary initialization. When the model matrices are 

time-invariant and there are no missing values in the sample, one can apply the filter 

simplification proposed by Casals et al. (1999) to improve the stability and 

computational efficiency of the algorithm. 

The CD algorithm, described in Section 4, is structurally similar to that of 

Koopman (1997), as it uses an augmented filter to evaluate recursively the likelihood. 

Its main advantage in comparison with Koopman’s method is that the columns 

corresponding to the augmented variables are automatically eliminated as the sample is 

processed. Therefore, the recursion collapses to a standard KF in the minimum number 

of iterations and there is no need to set this number heuristically. Second, the 

augmented equations are efficiently computed using the QR algorithm, thus avoiding 

the use of generalized inverses.  

Section 5 presents two examples illustrating the properties of our methods and 

Section 6 discusses in detail the relative advantages of both algorithms, provides some 
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concluding remarks and indicates how to obtain a free MATLAB toolbox which 

implements the methods described in this paper. 

 All the proofs for the formal results are given in the Appendices.  

 

2. Different forms of the likelihood function 

2.1. Diffuse likelihood 

 Consider the 1m   random vector tz , which is the output of the state-space 

model: 

  = +t+ t tx   x  w1 Φ E           (2.1) 

  = +t t tz    x   vH C            (2.2) 

where Φ , E , H , and  C  are fixed coefficient matrices, tx  is a 1n  vector of state 

variables and tw , tv  are zero-mean uncorrelated vectors of errors, such that the 

dimensions of twE  and t vC  are 1n  and 1m  respectively, with ( )cov =tw Q , 

( )cov =tv R , and ( )cov , =t tw v S  

 Note that model (2.1)-(2.2) assumes without loss of generality that: (a) the 

parameter matrices are time-invariant and (b) there are no exogenous inputs. Assuming 

the immemorial time hypothesis (De Jong, 1991) the initial state of a nonstationary 

system includes a diffuse component with infinite uncertainty. It is then easy to isolate 

this component by applying a similar transformation to the initial state, which yields: 

 
é ù
ê ú= ê ú
ë û

x
M x  

x

D
1

1 ND
1

         (2.3) 

where M is the matrix characterizing the transformation, xD
1  is a 1d   vector that 

includes the diffuse states, such that ( )cov  ¥xD
1 , and xND

1  is a   1n d   vector of 

stationary components. Denoting [ ]- =1M  T G  we can write (2.3) as: 
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 = +x  x xD ND
1 1 1T G         (2.4) 

which is equivalent to the decompositions of De Jong (1991) and Koopman (1997). On 

this basis, both works discuss the evaluation of the diffuse log-likelihood defined as: 

 
( ) ( ) ( )log log log covL L¥ = -

1

2
 Z  Z xD

1        (2.5) 

where ( )log ¥ ZL  denotes the diffuse log-likelihood of model (2.1)-(2.2), ( )log L Z  is 

the corresponding gaussian log-likelihood and Z is the sample. 

 AK (1985, Theorem 5.1) and De Jong (1991, Theorem 4.2) proved that (2.5) is a 

proper log-likelihood, as it is based on the components of Z  which are invariant to xD
1 .  

That is, it coincides with the log-likelihood of the sample after transforming it to avoid 

dependence on the diffuse components of the initial state vector. On this basis, De Jong 

(1991) proposes an evaluation algorithm based on the so-called diffuse KF, while 

Koopman (1997) suggests using two specialized filters for the diffuse and non-diffuse 

components, respectively. 

 The previous approach has a clear shortcoming, as the value of the diffuse 

likelihood may depend on the scale of the state vector. To see this, consider e.g., the 

observationally equivalent models: 

 
a

+ = +

= +

1t t t

t t t

x x w

z  x v

  

   
           (2.6) 

 

 

* *

*

a+ = +

= +

1t t t

t t t

x x w

z  x v

  

   
           (2.7) 

where a  is an arbitrary constant, ( )var tw = 1 , ( )cov t tw v = 0,  and t tx xa=* . 

According to (2.5), the diffuse likelihood of (2.6) and (2.7) are, respectively: 

  ( ) ( ) ( )1log log log covL L xa¥ = -
1

2
 z  z       (2.8) 

  ( ) ( ) ( )1log log log covL L xa a¥ = -
1

2
*  z  z       (2.9) 
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and these values do not coincide because ( ) ( ) ( )log log logL La a a¥ ¥- =*z  z  . Note 

that this problem also affects the first-order derivatives because: 

 

( ) ( )log logL La a

a a a
¥ ¥¶ ¶

= +
¶ ¶

1
* z  z

       (2.10) 

 Therefore, the values of the diffuse likelihood corresponding to equivalent 

representations, such as (2.6) and (2.7), can be different. 

 In general, any linear transformation of the initial diffuse vector such that 

=x xD * D
1 1L  would yield the initial state decomposition -= +1x  x xD * ND

1 1 1T L G , see 

(2.4), with ( )cov  ¥xD *
1 . Under these conditions, the diffuse likelihood would be: 

 ( ) ( ) ( )log log log covL L¥ = -
1

2
 Z  Z xD *

1       (2.11) 

which obviously depends on the transformation matrix -1T L . 

2.2. Conditional likelihood 

 An alternative to the diffuse likelihood would consist of computing a gaussian 

likelihood, conditional to the minimum subset of the sample required to eliminate the 

effect of the diffuse states. As we will see, this strategy is closely related to the diffuse 

likelihood approach, but is unaffected by the scale of the diffuse states. 

 It is well known that equation (2.2) can be written in matrix form as: 

 = + *Z O x Z1                   (2.12) 

where *Z  is the part of the sample that does not depend on x1  and  O  is the extended 

observability matrix, defined as: 

 

 

n-

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ë û

1


O

H

HΦ

HΦ

                 (2.13) 

 

 Applying the decomposition (2.4) to (2.12) we obtain:  
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D ND

D 1= +Z O x Z                (2.14) 

where ND ND
ND 1

*= +Z O x Z , =O OD T  is the extended observability matrix 

corresponding to the diffuse initial states and =O OND G is the analogous matrix 

affecting the non-diffuse initial states. Therefore, Z ND  is the part of the sample that is 

not affected by the diffuse initial states. Under these conditions, there always exists a 

matrix A  such that T =A OD I  with ( ) ( )rank dimension=A xD
1 . Then, premultiplying 

both sides of (2.14) by TA  we obtain: 

 
T T= +A Z x A ZD ND

1                 (2.15) 

 Denoting T ºA Z U  and taking conditional expectations of both sides of (2.14) 

we obtain:  

 ( ) ( )E E D
D 1=Z U O x U                          (2.16) 

Note that ( )E = 0NDZ U
 
as this conditional expectation depends on the inverse of 

( )cov U , which is null. Hence, the conditional covariance of the sample is: 

 ( ) ( ) ( )TT Tcov = - -Z U O A V O AD DI I          (2.17) 

where ( )covºV Z UND  and the covariance matrix given by (2.17) is finite and 

computable, as it only depends on the stationary part of Z . 

 Choosing ( )T -
=

1

D D DA O O O  yields the transformation proposed by AK (1985). 

However, there are other valid and more convenient choices for A . In this paper, we 

will use ( )T -æ ö÷ç= ÷ç ÷ç ÷çè ø
1

1 10

1O
A O O , where 1O  includes the first columns of DO  so that 

( ) ( )rank rank= 1DO O  and   ( ) ( )T T T- æ ö÷ç ÷= =ç ÷ç ÷çè ø
1

1 1 1
2

0
1

D

O
A O O O O

O
I , where DO  has been 

partitioned as 
æ ö÷ç ÷= ç ÷ç ÷çè ø
1

2
D

O
O

O
. Note that these expressions are particularized for the first 

observations in the sample, but any other subsample with ( ) ( )rank rank= 1DO O  would 

have been a valid choice. 
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 The likelihood of Z  conditional to U  is given by two main terms: (a) the 

determinant of ( )cov Z U , given in (2.17) and (b) a weighted sum of squares of the 

observations. About the first, expression (2.17) immediately implies: 

 
( ) ( ) ( )TT Tcov = - -D DZ U O A V O AI I         (2.18) 

and ( )T- DO AI  can be written as: 

 ( ) ( )
T

T T-

æ ö÷ç ÷ç- = ÷ç ÷ç ÷- ÷çè ø2 1 1 1

0 0
1DO A

O O O O
I

I
          (2.19) 

 Taking into account the structure of (2.19) and applying some well-known 

algebraic results, (2.18) can be written as: 

 ( )
T

T
cov

-

=
1 1

1
D DV O V O

Z U
O O

            (2.20) 

 As for the quadratic term, its expression is: 

 ( )T

T T T T

cov

 

-

-- - - -

é ù =ê úë û
é ù= - ê úë û

1

11 1 1 1
D D D D

Z Z U Z

Z V Z Z V O O V O O V Z
    (2.21) 

 The most efficient way to compute (2.20)-(2.21) consists of applying a standard 

KF to the observations Z . If we denote by F  the en-bloc linear KF reducing the 

observations to uncorrelated innovations, =Z FZ , then T=B F VF , where B  is a 

block-diagonal matrix of innovation variances. Therefore: 

  T- -=1 1V F B F                                                                                              (2.22) 

and the quadratic term in (2.21) would be: 

 

( )T

T T T T

cov
-

-- - - -

é ù =ë û
é ù- ê úë û

1

11 1 1 1      
D D D D

Z Z U Z

Z B Z Z B O O B O O B Z
     (2.23) 

 

where DO  is defined as =
D DO F O , which is the result of applying a KF to the 

columns of DO . The first addend in the right-hand-side of (2.23) corresponds to the 

sum of squared innovations associated to a KF with the initial conditions ( ),ND
1G 1x P .
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The second addend is a correction that compensates the effect of conditioning to a 

minimal subsample over the likelihood. 

 On the other hand, using the result (2.22) the determinant in (2.20) reduces to: 

 ( )
( )T T T T

T T
cov

-- - -

= =
1 1 1 1

11 1 1 D D D D
F B F O F B F O B O B O

Z U
O O O O

  (2.24) 

 Finally the conditional log likelihood, ignoring constant terms, would be:  

 

( )
( )

T T

T T T T

log log log-

- - - -

é= + - +êë
ù+ - úû

1 1
1

1 1 1 1

1

2
 
      

D D

D D D D

 Z U B O B O O O

Z B Z Z B O O B O O B Z
    (2.25) 

 Comparing (2.25) with the diffuse likelihood of De Jong (1991, Theorem 4.2) it 

can be seen that: 

 
( ) ( ) Tlog logL¥= - 1 1 Z U  Z O O           (2.26) 

where ( )log L¥ Z  denotes the diffuse log-likelihood. Expression (2.26) implies that the 

conditional and diffuse log-likelihood functions coincide but for the addend 

Tlog- 1 1O O  which is very important, as it avoids the undesirable scale effect described 

in sub-section 2.1. 

 Result (2.26) can be very useful to implement a likelihood computation procedure. 

Specifically, if one has the code required to calculate the diffuse log-likelihood, then it 

would be enough to add the correction Tlog- 1 1O O  to obtain a conditional likelihood 

algorithm. 

 On the other hand, expression (2.26) is conceptually important because it 

characterizes the conditioning set employed. For example, (2.26) is conditional to the 

beginning of the sample because the correction is computed using 1O . It would be easy 

to compute corrections relying on other sample sub-sets or even to the whole sample, 

which would require using Tlog- D DO O . Note that the conditional likelihood in this 

case would coincide with the marginal likelihood of Francke, Koopman and de Vos 

(2010).  
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 Finally, the conditional approach provides likelihood values that are coherent with 

those obtained by differencing the data; for a formal proof, see Appendix 1.  

 

3. State decomposition (SD) algorithm 

 The efficiency of the algorithm outlined in Section 2 can be improved by 

segregating the terms affected by the initial conditions. To this end, consider again the 

expression (2.14): 

 [ ]
é ù
ê ú= + = +ê ú
ë û

*x
Z O x Z O O Z

x

D
D ND 1

D 1 D ND ND
1

           (3.1) 

where, *Z  is the part of the sample that does not depend on 1x  ; ( )cov  ¥xD
1 , and 

( )N ,ND ND
1 1 1x Gx P , with > 0P1 . 

Theorem: Expression (3.1) implies that the determinant (2.20) and the quadratic term 

(2.21) of the likelihood function can be written, respectively, as: 

 ( )
( )T

T
cov

-
+

=
1

1 1

1* *V O V O P
Z U

O O

P
         (3.2) 

 

 
( )

( ) ( ) ( ) ( )

T

T T T T

cov
-

-- - - -

é ù =ê úë û
é ù- +ê úë û

1

11 1 1 1* * * *

Z Z U Z

Z V Z Z V O O V O O V ZP
   (3.3) 

 

where -

é ù
ê ú= ê úë û1

0 0

0 1P
P  ; ( )covº* *V Z U  is finite and [ ]=O O OD ND  

Proof. See Appendix 2. 

 The main advantage of using (3.2)-(3.3) instead of (2.20)-(2.21) is that these 

expressions separate the effects of both, the diffuse and non-diffuse initial states. This 

allows us to apply an idea due to De Jong (1988), consisting of computing efficiently 



12 
 

the likelihood by propagating a KF with initial conditions ( ),0xND
1G  and afterwards 

correcting the effect of this ad-hoc initialization. This approach yields the simplified 

KF: 

 1-= -t t t tz z xH                 (3.4) 

 
T T

-= +t t tB   H P H CRC1  
            (3.5) 

 ( )T TΦ -= + 1
t t|t -1 tK   P H ESC B

 
           (3.6) 

 1 1Φˆ ˆ+ -= + t tt t t tx   x K z                (3.7) 

 
( ) ( )

( )

T TT T

TT T T

+ -= + + -

- -           
t t t tt t t t

t t

P   P EQE K CRC K

K ESC CS E K
1 1Φ Φ

     

 (3.8) 

where tz  are the innovations, tB  its covariance matrix, tK  is the KF gain, +ˆ
t tx 1  is an 

estimate of the state vector at time t+1 conditional to the information available up to 

time t, +t tP 1  is its covariance and = -t tK HΦ Φ . This filter is augmented with the 

additional equations: 

 
( ) ( ) 1

11 -
-

-= + 
T

T
tt t t tw w H B zF  with 0 0=w          (3.9) 

 
( ) ( ) 1

1 11 - -
-

-= +
T

T
t tt t tW W H B HF F  with 0 0=W       (3.10) 

 Φ Φ Φ -tt= 1t  
 
with Φ =0  I              (3.11) 

where the terms ( )T -1*O V Z  and  ( )T -1*O V O  in (3.3) and (3.2), respectively, are given 

by Nw  and NW , defined in (3.9) and (3.10). The conditional log-likelihood would then 

be: 

( ) ( )

) ( ) ( )}

T T T T

T T

log

log log log log

T

t

N d                  

t t t t N N N

N

Z U z B z B w M M W M M w

P M W M O O p

--

=

ìæïïç é ù= + - + +íç ê úë ûçïèïî
é ù+ + - + -ë û

å

1 1 1

11

1

1

2

2

  P

P+
 

(3.12) 

 

where T is the sample size, =N T m , being m the dimension of tz , and d is the number 

of diffuse states. If the sample includes some missing values the value of T must be 

adjusted accordingly.  
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 Initializing the filter (3.4)-(3.11) with ( ),0xND
1G  simplifies the propagation 

equations. Specifically, in a time-invariant innovations model (e.g., VARMAX) with no 

missing values, the solution to the Riccati algebraic equation associated to (3.8) is null 

and, therefore, the initial condition =P   1 0  implies that t- = "0t tP 1
 (Casals et al. 

1999). This property simplifies the likelihood computation because if , it is 

not necessary to propagate equations (3.5), (3.6) and (3.8). Additional efficiency can be 

obtained by computing the term T
1 1O O  and the number of diffuse initial states, d , by 

applying the QR decomposition to the matrix H T , where T denotes the matrix in (2.4), 

see Appendix 3. 

 The simplification described above can be extended to any general time invariant 

model, see Casals et al. (1999), so it provides a very efficient way to evaluate the 

minimally-conditioned likelihood for many common representations such as, e.g., 

VARMAX or structural time series models. 

 

4. Column deletion (CD) algorithm 

 The conditional log-likelihood ( ) Z U  given in (2.26) can also be computed by 

an alternative column deletion algorithm, which is structurally similar to Koopman 

(1997) method. 

 Defining d nd
t t tx x  x= + , with 1 1Td Dx   x= , see (2.4), we can write the state 

equation (2.1) as: ( )1 1 Φ Ed nd d nd
t+ t+ t t tx  x   x  x  w+ = + + , and then, break it into the 

corresponding diffuse (superindex “d”) and non-diffuse (superindex “nd”) equations: 

 1 Φd d
t+ tx   x=                                (4.1) 

 1 Φ End nd
t+ t tx   x  w= +                 (4.2) 

 Accordingly, (2.2) can be written as ( )H Cd nd
t t t tz    x  x  v= + +  or, equivalently, as: 

t- = "0 t tP 1
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 H d nd
t t tz    x  z= +                    (4.3) 

where = +nd nd
t t tz    x C vH  is the non-diffuse component of the endogenous variables. In 

t=1, the observer (4.3) would be: = +d ndz    x  z1 1 1H , or, in compare notation: 

 = +* D ndz    x  z1 1 1H                 (4.4) 

where H H T* =   . This expression shows that 1z  depends on the diffuse vector 1
Dx , 

which uncertainty is infinite. Accordingly, it is not possible to determine the likelihood 

of 1z  or to apply a standard KF to compute the likelihood of the sample. 

 This problem can be tackled by: 

1) Decomposing 1
Dx  into two components, one formed by the linear 

combinations of 1
Dx  which affect 1z , and another one which components 

affect the rest of the sample ( , , , Nz z z2 3 ). 

2) Estimating the part of 1
Dx  which depends on 1z , conditional to this value. 

3)  Repeating step 2) by successively including the values  , , , Nz z z2 3 until the 

dimensions of the term affected by the diffuse conditions collapse to zero.  

 The following Subsections describe in detail these steps. 

4.1 First Step: Decomposition 

 Consider the matrix Q, which spans a d-dimensional space, such that it can be 

partitioned as H H* *

^é ù= ê úë ûQ Q Q , where 
H *Q  is the 1d d  matrix that generates the row-

subspace of H *  and the 2d d  matrix 
H *

^Q  generates the subspace orthogonal to that of 

H * , so that 
H

H *

* ^ = 0Q . The dimensions of these matrices are 1 2d d d+ = , with  

1d m . Under these conditions Dx1  can be decomposed as follows: 

 
^ ^= +1 1* *

Dx Q Q1 H H
a a                (4.5) 

where 1a  and ^
1a  are ( )´1 1d  and ( )´2 1d  vectors of diffuse initial states respectively. 

Substituting (4.5) in (4.4) yields: 
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 = +11 1H ** ndz     za                  (4.6) 

where 
H

H H *

** *=   Q  is a full rank matrix, with ( )rank d m= £1H ** . Note that the 

number of diffuse states that affect 1z  reduces in this first step from d  to d1 . 

 In this situation we can estimate of 1a  conditional to the information in 1z : 

( ) ( )T T-
- -é ù= ê úë û1

1
1 1ˆ 1 1 1H H H** ** ** B  B za            (4.7) 

with the conditional covariance: 

( ) ( )T
cov

-
-é ù= ê úë û1

1
1ˆ ˆ ** **z  B1 1H Ha              (4.8) 

being ( )cov=1 1
ndB z  a computable and finite value matrix which can always be inverted 

since H ** is full rank, see De Jong (1988). 

 Since there is a part of Dx1  that can be estimated with the information in 1z , it 

would be convenient to derive a specialized filter for (4.5)-(4.6) such that the 

propagation of the diffuse states distinguishes the part corresponding to 1a , which 

uncertainty conditional to z1  is finite and, accordingly, should be taken into account. 

Therefore, we can re-organize (4.1)-(4.3) at t=1, taking into account (4.5) as: 

 with ^ ^= = 1*

d* d* d*x   x x Q2 1 1 H
Φ T a

 

Taking into account that = +2
nd ndx x  w1 1Φ E , we obtain: 

 = +1 2*

nd* ndx   Q x2 H
ΦT a                  (4.9) 

 and: 

 
= +1*

ndz Q z1 1H
HT a                  (4.10) 

 Building on (4.9)-(4.10) and Casals, Jerez and Sotoca (2000, pp. 61) the estimates 

for the mean and variance of  nd*x2 , conditional on z1 , are: 

 ( )= + - 1 1ˆ ˆ ˆ*

nd* ndx   x K H Q2 1 21 H
Φ T a

          
 (4.11) 
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 ( ) ( ) ( )TT Tcov= + - -1 1 1 1ˆ ˆ* *

nd* ndP   P K H Q z Q K H2 1 2 1 H H
Φ T T Φa

 
  (4.12) 

and ˆ ndx2 1
, ndP2 1

 and 1K  (the KF gain) can be computed by applying a standard KF to the 

stationary subsystem. On the other hand, the estimate, 1â , and its covariance,  

( )cov 1 1ˆ ˆ za , are given by (4.7) and (4.8). 

4.2 Second Step: Estimation 

 In t=2, = +d* nd*z x z2 1 2HF , so: 

 ^ ^= +1*

nd*z Q z2 2H
H TF a                          (4.13) 

where the states ^
1a  affect z2  but do not affect z1 . Then, the second innovation can be 

written as = - = +ˆ d* nd*z z z x z2 2 2 22 1 H  and we are in the same situation as in t = 1  

because ( )cov nd*z2  
is finite and has the expression: 

 ( ) T Tcov = +nd* nd*z H P  H CRC2 2 1
           (4.14) 

but comparing (4.13) with (4.6) it is immediate to see that the number of diffuse initial 

states is now the dimension of ^
1a , that is 2 1d  d  d  d= - £ .  

 We will therefore do the same as in the first step: (a) use the results in De Jong 

(1988) to estimate ^
1a  and its variance, conditional to z2 , (b) apply the smoother due to 

Casals, Jerez and Sotoca (2000) to condition it to z2 , and (c) obtain an estimate of the 

stationary sub-system state vector and its covariance, so that the diffuse initial 

conditions will not affect the filtering results, see (4.11)-(4.12). 

4.3 Third Step: Filtering 

 By induction, it is easy to see that, at any t, the procedure given by the two 

previous steps reduces to an augmented filter, including the following standard KF 

equations: 

 -= - ˆt t t tz z x 1H                 (4.15) 
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T T

-= +t t tB   H P H CRC1  
            (4.16) 

 ( )T TΦ -= + 1
t t|t -1 tK   P H ESC B

 
           (4.17) 

 1 1Φ*ˆ ˆ+ -= + t tt t t tx   x K z                (4.18) 

 
( ) ( )

( )

T TT T

TT T T

+ -= + + -

- -

*

           
t t t tt t t t

t t

P   P EQE K CRC K

K ESC CS E K
1 1Φ Φ

     

 (4.19) 

 

with  Φ Φ -=t t K H . On the other hand, the augmented filter equations are: 

 ( )T** **
-

-é ù= ê úë û

1
1

t t t tA  H  B H              (4.20)
 

 
( )T** -= 1t t t t ta  A H  B z                (4.21)

 

 ( ) ( ) ( )
T TT

1 H H
Φ T T Φ* *

*

t t
+ = + t t t t tt t t+1 tP   P Q A Q         (4.22) 

 1 1 H
+Φ T *

*ˆ ˆ
t

+ += t t tt t t tx   x Q a              (4.23)
 

 1 H
T ΦT *

t

^
+ =t t  Q                  (4.24) 

where 
t

= *

**
t tH H Q

H
T  

 Obviously, these equations are required only if tT  has not null dimension. In this 

case they would simplify to: 
1 1

*ˆ ˆ+ +=t t t tx   x
 
and 

1 1
*
+ +=t t t tP   P  

 The matrices 
t
*Q

H
, 

t

^
*Q

H
and **

tH  can be obtained efficiently by applying a column 

pivoting QR decomposition to *
t tH = HT , see Appendix 2, and the initial conditions 

are those corresponding to the stationary subsystem, that is, ( ),ND
1 1G x P . 

 The basic idea behind this procedure is that the number of columns of +t 1T  in 

(4.24) is the number of columns of  tT  minus the rank of the matrix tH ** , defined in 

(4.20). Therefore, the dimension of Tt  
decreases with the number of observations 

processed and, in a finite number of iterations, its dimension will collapse to zero. Once 
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this critical size has been achieved, the augmented equations are no longer needed and 

the filter collapses to a standard KF for stationary systems. 

4.4 Likelihood evaluation 

 Given the results in the previous sub-sections, we will now discuss the analytical 

expression of the likelihood function, conditional on the minimum number of 

observations required to determine the diffuse initial conditions. 

 Consider a system such as (2.1)-(2.2), with diffuse initial states and, therefore, 

with a finite conditional covariance and an infinite unconditional uncertainty. Its 

innovations, tz , can be decomposed as: 

 = + ** nd
t t t tz H za                 (4.25) 

where nd
tz  is the stationary component  and ta  is a vector of td n<  diffuse states. 

Under these conditions, if we define U , the subset of Z  corresponding to the first td

linearly independent rows of **
tH , the Gaussian log-likelihood of Z conditional to U  

according to (2.26) would be: 

 

( ) {
( ) ( )}

T T

T

log log

log log* * p

- -

=

= - + - -

é ù- + -ë û

å 1 1

1

1

2
2

  t t t t t t t t

t t

Z U z B z a A a B A

H H0 0

T

t

N d
   (4.26) 

where *
tH 0  includes the first td linearly independent rows of **

tH  and the values of T, N 

and d are defined as in (3.12). Note that: 

1) All the terms in (4.26) can be evaluated by propagating the filter (4.15)-(4.24). 

In particular, the computation of the term Tlog 0 0
* *
t tH H  and the number of 

initial diffuse states, d, are obtained as by-products of the QR decomposition, 

see Appendix 3. 

2) This procedure is efficient, as its only computational overhead in comparison 

with evaluating the likelihood of a stationary system, results from the 



19 
 

calculation of ta  and tA  , given in (4.20) and (4.21), until these terms 

collapse to zero. Furthermore, it does not require generalized inverses, see 

Koopman (1997), eqs. (11)-(12). 

3) The term Tlog * *
0 0t tH H  in (4.26) is the difference between the diffuse and the 

minimally-conditioned likelihood and, therefore, is equivalent to the addend in 

(2.26). 

4) Last, when the model does not include cointegration restrictions and the 

sample does not have missing values, the log-likelihood values given by 

(3.12) and (4.26) coincide with those obtaining by differencing the data, see 

Appendix 1. In the cointegration or missing value cases our method is more 

efficient because differencing leads to a loss of sample information. 

 

5. Examples 

5.1. Airline model 

 This example illustrates the consistency of the conditional likelihood approach 

and its ability to work with missing values. To this end, we will use the famous series G 

of international airline passengers, from January 1949 to December 1960, see Box, 

Jenkins and Reinsel (1994). 

 Table 1 compares the estimation results obtained with the full sample for both, 

for the stationary ( ) ( )MA MA´
12

1 1  airline model: 

 ( )( )q e= - -Q 121 1  t tz B B         (5.1) 

and the nonstationary version of (5.1): 

 ( )( ) ( )( )log q e- - = - -Q12 121 1 1 1 t tB B P B B     (5.2) 
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where tP  is the number of airline passengers at time t, B is the backshift operator, 

( )( )log= - - 121 1  t tz B B P  and the error variance is ( )var ee s= 2
t . 

[Insert Table 1] 

Note that: 

1) the estimates displayed in the table are identical up to the third decimal place; 

in fact, the differences between actual values are in the order of 10-14, 

2) in the case of the stationary model (5.1), the diffuse and conditional likelihood 

values on convergence are identical, but 

3) when one estimates the nonstationary model (5.2) the conditional likelihood 

value on convergence is identical to those obtained with model (5.1), while the 

diffuse likelihood value is substantially smaller. 

 Consistency of the likelihood values over various difference orders may be 

important when one wants to apply common econometric tools such as LR tests or 

Information criteria. 

 A residual analysis of the previous model shows that observations # 62 and 135 

may be impulse-type outliers. An efficient way to deal with these values consists of 

tagging them as missing values, see Gomez, Maravall and Peña (1999). Table 2 

compares the estimates of models (5.1) and (5.2) obtained for the sample with these 

missing values. Note that the estimates corresponding to the stationary and 

nonstationary models are remarkably different. This happens because differencing 

propagates the missing values, thus destroying potentially valuable sample information. 

In this case working with model (5.2) is certainly more adequate. 

[Insert Table 2] 
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5.2. Dynamic factor model 

 Consider two observable time series generated by a common dynamic factor: 

 
a
b

é ù é ùé ù
ê ú ê úê ú= +ê ú ê úê úë ûë û ë û

1 1

2 2

t t
t

t t

y a
f

y a
           (5.3) 

where a  and b  are unknown parameters and the common factor,
  tf , is given by the 

process: 

 ( )( )f e- - =1 1   f t tB B f        (5.4) 

with a stationary autoregressive parameter f f . Finally, the error terms et ,  1ta
 
and 2ta  

are mutually independent gaussian white noise sequences with constant variances es
2 , 

s21  and s22 . 

 As it is well known, factor models such as (5.3)-(5.4) are not identified. To 

estimate them one must therefore impose a normalizing constraint.  

 Tables 3 and 4 summarize the results of an exercise consisting of: simulating 

100 values of 1ty  and
  2ty , with the true parameter values indicated in the first column, 

and then estimating the model parameters, considering different normalizing constraints 

and likelihood functions. 

[Insert Table 3] 

[Insert Table 4] 

 The results in Table 3 display a remarkable stability. Parameter estimates and 

likelihood values on convergence are practically identical, clearly showing that different 

normalizing constraints yield observationally equivalent models. On the other hand, the 

diffuse likelihood results in Table 4 are practically identical and good enough for the 

normalizing constraints a=1   and b =1 , but change substantially when the constraint 

is .es = 1 . This sensitivity to the normalizing constraint is due to the last addend in 

(2.26) which, for this model, depends on the parameters to be estimated. As this 
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example shows, its omission in the diffuse likelihood can be the source of substantial 

changes in the parameter estimates.  

 

6. Concluding remarks 

In this paper we discussed the minimally conditioned likelihood for a state-space 

model, allowing for unit roots. This approach is relatively simple, as it is based on a 

standard KF, and has specific advantages in comparison with data transformation, 

diffuse likelihood and differencing. 

About the former, our method avoids using nonstandard filters and is general, 

meaning that it allows for missing data and can be applied to any dynamic model 

including, for example, cointegrated structures.  

Our approach also has advantages in comparison with diffuse likelihood 

because, as we showed in sub-section 2.1, the diffuse likelihood value depends in some 

cases on the scale of the state vector. Our log-likelihood includes a normalizing addend, 

see Exp. (2.26), which avoids this problem by making it insensitive to scale factors. In 

some nontrivial cases such as, e.g., dynamic factor models o models with cointegration 

constraints, this addend depends on the parameters to be estimated. As the example in 

sub-section 5.2 shows, ignoring this term makes the estimates sensitive to identifying 

constraints that should be neutral. 

Last, we have proved that the minimally conditioned likelihood is consistent 

with the results provided by differencing (see Appendix 1) so, when both methods are 

comparable, their results are identical. On the other hand our method is more complex 

than differencing, but has many advantages as it is: (a) more flexible, as it can be 

applied to estimate non-multiplicative models, such as time-varying parameter 

regressions or structural time series models; (b) more efficient when there are 
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cointegration constraints or missing in-sample, because it avoids unnecessary data 

losses; and (c) more convenient when one wants to compute forecasts or apply a signal 

extraction procedure. 

The terms of the minimally conditioned likelihood can be computed using either 

the SD or CD procedures described in Sections 3 and 4, respectively. Both methods are 

mutually consistent in the sense that, when applied to a given sample and model, they 

return the same likelihood value, allowing for insignificant numerical differences. 

Despite this equivalence, each one has specific advantages in different situations. 

Specifically, the filters required by both algorithms have some computational 

overhead in comparison with a standard KF. In particular, the SD procedure requires 

propagating equations (3.9)-(3.11) for all t, while the CD method only requires 

additional calculations until the augmented filter collapses to a standard KF. 

Furthermore, the CD algorithm includes an efficient and stable method, based on the 

QR decomposition, to include the diffuse initial conditions in the filter. As a 

consequence, the CD procedure is more efficient in the general case. However, the SD 

method is computationally cheaper when there are no missing values in the sample and 

the model parameters are time-invariant. This happens because, under these conditions, 

one can take advantage of the simplifications derived from the null solution to the 

Riccati equation, which more than compensate its intrinsic overhead. 

Computational efficiency in both cases is further enhanced by the QR algorithm 

employed to compute the determinants Tlog 1 1O O  or Tlog * *
t tH H0 0  which, when 

computed using standard approaches, can add a substantial computational overhead. 

The procedures described in this article are implemented in the E4 functions 

“lfsd” (SD method) and “lfcd” (CD method). E4 is a MATLAB toolbox for time series 

modeling, which can be downloaded at: www.ucm.es/info/icae/e4. The source code for 

all the functions in the toolbox is freely provided under the terms of the GNU General 
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Public License. This site also includes a complete user manual and other reference 

materials. 
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APPENDIX 1. Equivalence between the likelihood of differenced data and the 

minimally-conditioned likelihood. 

Consider the multivariate stochastic process   1

N

ttz


 and assume, without loss of 

generality, that it has m first-order integrated components, such that its first-order 

difference,  1 B t tw z , is a stationary and invertible process. This stationary 

transformation can be written in compact form as:
 

w F z , where z and w are 1N   

vectors and  F is a    m N m N    block-matrix, composed of m m  null and 

identity matrices, with the following structure:  

 



    


I

I I
F

I I

0 0 0

0 0

0 0

 
  
 
  

 

  

Under these conditions, the Gaussian density of z is: 

     , , ,f f f   1 2 Nz F z z w w  

where 1z  contains the first observation in the sample,  2 2 1w z z  and so on. Under 

diffuse initial conditions it holds that  cov 1z , because the dimension of 
 

coincides with the number of unit roots. Accordingly   1
cov 0z1


    and then: 

     , , , , ,f f f  1 1 2 N 1 2 Nz z z w w z w w  

 So the density of the stationary transformation  , ,f 2 Nw w  coincides with the 

conditional density  f 1z z , being 1z  is the minimal sub-sample required to determine 

the diffuse initial conditions in this case. 

1z
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APPENDIX 2. Proof of the Theorem. 

Part (1): Denoting ( )covº NDV Z U  and ( )covº* *V Z U , see expression 

(3.2), we first want to prove that: 

T TV O V O V O V O P- -= +1 1
1P* *

D D        (A.1) 

with [ ]= D NDO O  O  and 
P -

é ù
ê ú= ê úë û1

0 0

0 1P  

 First, we know that: 

T T TO V O O W W O-+ = +1P P*         (A.2) 

where W  is a matrix such that T =*WV W Ι , so T- =1*V W W . Defining O W Oºˆ
 

expression (A.2) can be reformulated as: 

 
T T T T

T T
T

T T
D D D ND

D D

ND D ND ND

O V O O W W O O O

O O O O
O V O V P

O O O O P

-

- -
-

+ = + = + =

= =
+

1

1 1
11

1

P P P* ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ

  

                                                                                                                        (A.3) 

where T
ND NDV O PO V= +1

* [see equation (3.1)] and T T T
ND NDWVW WO PO W I= +1  

Therefore, it is easy to see that: 

T +1
ˆ ˆ

ND NDV = O P O I
                                                                                                                          

(A.4)
 

with T =WVW V  . Applying the matrix inversion lemma to expression (A.4): 

T TI ˆ ˆ ˆ ˆ-- -é ù- +ê úë û
1

1 1
1ND ND ND NDV = O O O P O

                                                                                        
(A.5) 

Last, (A.3) is: 

T T T- - - -=1 1 1 1
1 1

ˆ ˆ
D D D DO V O V P O V O W V W P                                               (A.6) 

and substituting (A.6) in (A.1) we obtain: 

T T -- - -= +
11 1 1
1 1

* *V O V O V O V O V V P PPD D D D  
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which is the result that we wanted to prove.
 

Part (2). Now, we want to prove that: 

( ) ( )T T

T T

D D D DV V O O V O O V

V V O O V O O V

- - - -

-- - - -

é ù- =ê úë û
é ù= - +ê úë û

1 1 1 1

11 1 1 1P* * * *
     (A.7) 

see expression (3.3).To prove (3.3) it is enough to pre and post-multiply (A.7) by TZ  

and Z , respectively. Hereafter, we will denote the terms in (A.7) as 

AA - BB = CC - DD   where: 

-1AA = V

 

( ) ( )T T- - -é ù
ê úë û

1 1 1
D D D DBB = V O O V O O V

 
*-= 1CC V

 

    T T* * *-- - -é ù= +ê úë û
11 1 1DD V O O V O O VP  

Under these conditions, we will prove that DD = BB + CC - AA

 

             

T T T T T

T T T Tˆ ˆ ˆ ˆ ˆ

-

-

é ù= + =ê úë û
é ù= + =ê úë û

1

1

DD W WO O W W O O W W

W O O O O W W W

P

P P
                                              

(A.8) 

  

with  T Tˆ ˆ ˆ ˆ ˆ-é ù= +ê úë û
1

O O O OP P

 

or, 

  T T T

T T T

T T

-

-

-- - - -

é ù é ù
é ù ê ú ê ú= =ê ú ê ú ê úë û +ë û ë û

é ù= + -ê úë û

1

1
1

1
1 1 1 1

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

D D D ND D
D ND

ND D ND ND ND

D D D D

O O O O O
O O

O O O O P O

V O O V O O V VI

P

                                                     

(A.9)

 
 

where we applied the partitioned matrix inversion lemma and expression (A.5). 

Substituting (A.9) in (A.8) we obtain: 
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{ }
{ }

T T T T

T T T T T

Iˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

-- - - -

-- - - -

é ù= = + - =ê úë û
é ù + -ê úë û

1
1 1 1 1

1
1 1 1 1

D D D D

D D D D

DD W W W V O O V O O V V W

W V O O V O O V W W W W V W

P

 

and, taking into account that,  T- =1*V W W  and T =WVW V  

 T T *-- - - - -é ù= + - = + -ê úë û
11 1 1 1 1

D D D DDD V O O V O O V V V  BB  CC  AA  

which is the result that we wanted to prove. 
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APPENDIX 3. QR algorithm. 

It is well known that the QR decomposition of any m n  real-valued matrix A is:  

A RQ  

Where Q is an orthonormal n n  matrix and R is a m n  lower triangular matrix. 

The column-pivoting QR decomposition is a reordering such that the elements in the 

main diagonal of R are sorted in decreasing order according to their absolute value. In 

this case, the decomposition results in: 

A E RQ  

where E is a m m  permutation matrix. After the previously defined re-ordering, R can 

be written as: 

 R R1 0  

Where the dimensions of R1  are m d , being d the rank of A, which can be determined 

as the number of nonzero elements in the main diagonal of R. If we partition Q as: 

 
Q

Q
Q

1

2

 
  
 

 

being Q1  a d n  matrix, then A can be written as A E R Q1 1 , where Q1  spawns the 

row-space of A and Q2  is orthogonal to this row-space. In the Column Deletion 

algorithm we apply this decomposition directly to t tH H T*  , obtaining  T

tH
Q Q* 1 , 

 T

tH
Q Q* 2

  , **
1tH E R  and the term of the likelihood given in (4.26) can be 

computed as  T

1

log log ,
d

i

i i


   0 0 1t tH H R* *  

 The State Decomposition methods requires including the decomposition of H T  

in the filter, where T is given by (2.4). The matrix  1 Μ T G  can be easily 

computed by the initialization procedure proposed by De Jong and Chu-Chun-Lin 

(1994). 
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Table 1. Estimation results obtained for the full airline dataset.  

 Model (5.1), diffuse 

and conditional 

likelihood 

Model (5.2), diffuse 

likelihood 

Model (5.2), 

conditional likelihood 

Minus log-

likelihood 

-244.697 -323.750 -244.697 

q̂  .402 

Q̂  .557 

ˆes  .037 
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Table 2. Estimation results obtained for the airline dataset, treating observations # 62 

and 135 as missing values. 

 Model (5.1), diffuse and 

conditional likelihood 

Model (5.2), 

diffuse likelihood 

Model (5.2), 

conditional likelihood 

Minus log-

likelihood 

-237.780 -236.903 -250.687 

q̂  .325 .359 

Q̂  .625 .568 

ˆes  .034 .034 
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Table 3. Results obtained with the State Decomposition algorithm (identical to those of 

the Column Deletion method). The true parameter values are given in the first column 

and have been employed in all the cases as initial conditions for the iterative 

optimization. Constrained parameters are denoted by an asterisk. 

 Normalizing constraint 

 a=1   b =1  .es = 1  

Likelihood value on 

convergence 

130.887 

a=1   1.000* 1.011 .913 

b =1   .989 1.000* .903 

.s =1 4  .404 .404 .404 

.s =2 4  .389 .389 .389 

.f = 7f   .776 .776 .776 

.es = 1  .091 .090 .100* 

 

  



34 
 

 

Table 4. Results obtained with the diffuse likelihood. The true parameter values are 

given in the first column and have been employed in all the cases as initial conditions 

for the iterative optimization. Constrained parameters are denoted by an asterisk. 

 Normalizing constraint 

 a=1   b =1  .es = 1  

Likelihood value on 

convergence 

130.887 130.897 130.746 

a=1   1.000* 1.010 .827 

b =1   .989 1.000* .818 

.s =1 4  .404 .404 .405 

.s =2 4  .389 .389 .390 

.f = 7f   .776 .776 .806 

.es = 1  .091 .090 .100* 

 

 


