
Modeling and Implementing an Emotional
Based Decision Agent

Pablo G. Esteban
Department of Statistics and Operations Research

Universidad Rey Juan Carlos
Madrid

pablo.gomez.esteban@urjc.com

Abstract

We provide a model that supports the decision making process of
an autonomous agent which interacts with several users and is influ-
enced by affective mechanisms. The approach has a decision analytic
flavor, but includes models forecasting the users’ behavior. Moreover,
simulated emotions impact the agent’s utility function. We describe
the implementation of the model with an edutainment bot.

Keywords: Decision Analysis, Adversarial Risk Analysis, Affective Decision

Making, Affective Computing, Robotics

1 Introduction

Recently, the field of cognitive processes has shown that emotions may have
a direct impact on decision-making processes, see e.g. [28]. Advances in
areas such as affective decision making [5], neuroeconomics [7] and affective
computing [17] are based on this principle.

Following this, we would like to provide a model for an autonomous agent
that makes decisions influenced by emotional factors when interacting with
humans and other agents. For that purpose, we have based our work on
the recently introduced framework of Adversarial Risk Analysis (ARA) [19],
which avoids the standard and unrealistic game theoretic assumptions of

1

common knowledge, through a nested hierarchy of decision analysis models.
From the point of view of our agent, the problem is understood as a decision
analytic one, but we consider principled procedures which employ the adver-
sarial structure to forecast the adversaries’ (other agents or humans) actions.
On doing this, the agent should forecast what the other participants think
about him, thus starting the above mentioned hierarchy. Depending on the
level the agent climbs up in such hierarchy, we would talk about 0-level anal-
ysis, 1-level analysis and so on, borrowing the k-level thinking terminology
and view, see [22], [1] and [11]. Our approach has a clear Bayesian game
theoretic flavor, as in [12] and [18].

Our model is essentially decision analytic, see [4], incorporating also mod-
els forecasting the evolution of its adversaries and the environment surround-
ing all of them. We also include models simulating emotions, which have an
impact on the agent’s utility function. We aim at supporting the decision
making of an emotional based agent improving interfacing and interaction
with users. We describe the implementation of our model with a edutainment
bot endowed with several sensors to infer users’ actions and environment’s
states.

The structure of the paper is as follows. In Section 2, we describe the
basic elements and participants in our framework. Section 3, defines the
incumbent forecasting and preference models and the expected utility max-
imization based on some dynamic programming techniques. The effective
implementation of our model is in Section 4, including a detailed explana-
tion of forecasting and multiobjective preference models. The paper ends
with a discussion and future work on Section 5.

2 Basic framework

We start by introducing the basic elements of our model. We aim at de-
signing an agent A whose activities we want to regulate and plan. There
are participants or users, B1, . . . , Br ∈ Bu, which interact with A. An index
u ∈ {1, 2, ..., r} will identify the corresponding user. The activities of both A
and the Bu

′s take place within an environment E. As a motivating example,
suppose that we aim at designing a bot A which will interact with a group
of three kids, B1, B2, B3, within a room E.

A makes decisions within a finite set A = {a1, . . . , am}, which possibly
includes a do nothing action. The Bu

′s make decisions within a set B =

2

{b1, . . . , bn}, which also includes a do nothing action. B will be as complete
as possible, while simplifying all feasible alternatives down to a finite number.
The environment E changes with the users’ actions, adopting states within
a set E .

The agent faces this changing environment, which affects its own behav-
ior. A has q sensors providing readings about the external environment. Each
sensor reading is attached to a time t, so that the sensor reading vector is
st = (s1t , . . . , s

q
t). The agent infers the external environmental state e, based

on a possibly probabilistic transformation function f , so that

êt = f(st).

A also uses the sensor readings to infer which user he is facing, through a
probabilistic function h

B̂t = h(st).

Finally, A employs the sensor readings to infer what the users have done,
based on a (possibly probabilistic) function g

b̂t = g(st).

We design our agent by planning its activities according to the basic loop
in Fig. 1, which is open to interventions, see [26], if an exception occurs.

Figure 1: Basic Agent Loop

As we can see in Fig. 1, at the begining of each iteration, sensors st are read
in order to recognize the identifiable users Bu, as well as interpret the state
et and infer the users’ actions bt. Once the bot knows about what is around
him, the next step is to update the forecasting model with the information
he just received through sensors st. Using the recently updated forecasting
model, he maximizes the expected utility of his possible actions to choose
the next one. The loop is completed by updating the clock.

3

3 ARA affective decision model

Essentially, we shall plan our agent’s activities over time within the decision
analytic framework, see [4]. We describe, in turn, the forecasting model,
which incorporates ARA elements, the preference model and emotions, and,
finally, the corresponding optimization problem.

3.1 Forecasting models

The agent maintains a forecasting model which suggests with which proba-
bilities will the users act and the environment react, given the past history of
the agent’s actions, the users’ actions and the evolution of the environment
(et−1, at−1, bt−1) and its action at.

We describe the general structure of our models. Assume that, for com-
putational reasons, we limit the agent’s memory to two instant times. For the
moment, we shall just forecast one period ahead. Therefore, we are interested
in computing, for each user Bu,

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bu). (1)

(1) may be decomposed through

p(et|bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bu) ×
× p(bt|at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bu).

We refer to the first term which we call the environment model. We
assume that the environment is fully under control by the users. In our mo-
tivating example, they control the light, the temperature and other features
of the room. Moreover, they may plug in the bot to charge its battery, and
so on. Only the latest of the users’ actions will trigger the evolution of the
environment. Thus, we shall assume that, in general,

p(et | bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bu) = p(et | bt, et−1, et−2).

Regarding the second term, we shall consider that the users have their own
behavior evolution, that might be affected by how they react to the agent’s
actions, thus incorporating the ARA principle. Thus, we assume that

p(bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), Bu) = p(bt | at, bt−1, bt−2, Bu).
(2)

4

The agent will maintain two models in connection with (2) for each user.
The first one, model M1, describes the evolution of the users by themselves,
assuming that they are in control of the whole environment, and they are not
affected by the agent’s actions. We call them the users’ models, described
through

p(bt | bt−1, bt−2, Bu).

The other one, model M2, refers to the users’ reactions to the agent’s actions.
Indeed, it assumes that the users are fully reactive to the agent, which we
describe through

p(bt | at, Bu).

We call them the classical conditioning models, with the agent possibly con-
ditioning the users. We combine both models to recover (2). We view the
problem as one of model averaging, see [10]. In such case,

p(bt | at, bt−1, bt−2, Bu) =

=

[
p(M2 | Bu) p(bt | bt−1, bt−2, Bu) + p(M1 | Bu) p(bt | at, Bu)

]
,

where p(Mi | Bu) denotes the probability that the agent gives to model Mi,
given that the user is Bu, with p(M1 | Bu)+p(M2 | Bu) = 1, p(Mi | Bu) ≥ 0.
These probabilities, essentially, capture how reactive to the agent’s actions
the users are.

Finally, based on the above, we shall use

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) =

=
∑
u

[
p(et | bt, et−1, et−2)× p(bt | at, bt−1, bt−2, Bu)× p(Bu)

]
.

Extensions to forecasting m steps ahead follow a similar path. For exam-
ple, for two steps ahead, we have

5

p((et+1, bt+1), (et, bt) | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) =

= p((et+1, bt+1) | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2), (et, bt))×

× p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) =

=
∑
u

[
p(et+1 | bt+1, bt, et, et−1, et−2)×p(bt+1 | at, bt, bt−1, bt−2, Bt+1

u)×p(Bt+1
u)

]
×

×
∑
u

[
p(et | bt, et−1, et−2)× p(bt | at, bt−1, bt−2, Bt

u)× p(Bt
u)

]
.

Learning about various models within our implementation is sketched in
Section 4.

3.2 Affective preference model

We describe now the preference model. Assume that the agent faces con-
sequences c = (c1, c2, . . . , cl). At each instant t, they will depend on his
action at, the users’ action bt and the future state et, realized after at and bt.
Therefore, the consequences will be of the form

ci(at, bt, et), i = 1, . . . , l.

We assume that they are evaluated through a multi-attribute utility function,
see [4]. Specifically, without much loss of generality, as argued in [27], we
shall adopt an additive form

u(c1, c2, . . . , cl) =
l∑

i=1

wiui(ci),

with wi ≥ 0,
∑l

i=1wi = 1.
The consequences might be perceived differently depending on the current

emotional state dt(Bu) that the agent has, assuming that the identified user
is Bu. Indeed, emotions might change depending on the user the agent is
facing. We shall define such emotional state in terms of the level of k basic
emotions, through a mixing function

dt = h(em1
t , em

2
t , . . . , em

k
t).

6

[6] and [23] provide many pointers to the literature on mixing emotions. The
intensity of these basic emotions, in turn, will be defined in terms of how de-
sirable a situation is, i.e., how much utility u(ct) is gained, and how surprising
the situation was, see [8] for an assessment of various models in relation with
emotions. The expectations, or surprise, will be defined by comparing the
predicted and the inferred users’ actions through some distance function

zt = δ(b̄t, b̂t),

where b̄t is (the most likely) predicted action for user Bu.
We assume some stability within emotions, in that current emotions influ-

ence future emotions. Thus, we consider a probabilistic evolution of emotions
through

emi
t = ri(em

i
t−1, u(ct), zt),

as in [28]. Finally, following [14], we shall actually consider that the utility
weights will depend on the emotional state, the stock of visceral factors in
their notation, so that, at time t

u(c) =
l∑

i=1

wi(dt(Bu))ui(ci).

3.3 Expected utility

The goal of our agent will be to maximize the predictive expected utility.
Planning several instants ahead requires computing maximum expected util-
ity plans defined through:

max
(at,...,at+r)

ψ(at, . . . , at+r) =
∑

(bt,et),...,(bt+r,et+r)

[
r∑

i=D

u(at+i, bt+i, et+i)

]
×

× p((bt, et), . . . , (bt+r, et+r) | (at, at+1, . . . , at+r, (at−1, bt−1, et−1), (at−2, bt−2, et−2))).

assuming utilities to be additive over time. This could be solved through
dynamic programming, the Bellman’s equation [2] being in this case

Vt((et−2, bt−2), (et−1, bt−1)) = max
at

∫
[u(at, bt, et) + Vt+1((et−1, bt−1), (et, bt))]×

× p(et|bt, et−1, et−2) p(bt|at, bt−1, bt−2)dbtdet

7

If planning several instants ahead turns out to be very expensive computa-
tionally, we could plan just one period ahead. In this case, we would aim at
solving

max
at∈A

ψ(at) =
∑
bt,et

u(at, bt, et)×

× [p(bt, et | at, (at−1, bt−1, et−1), (at−2, bt−2, et−2))] .
We may mitigate the myopia of this approach by adding a term penalizing
deviations from some ideal agent consequences, as in [21]. In this case, the
utility would have the form u(c)− ρ(c, c∗) where ρ is a distance and c∗ is an
ideal consequence value.

Agents operating in this way may end up being too predictable. We may
mitigate such effect by choosing the next action in a randomized way, with
probabilities proportional to predictive expected utilities, that is

P (at) ∝ ψ(at),

where P (at) is the probability of choosing at. See [16] for a justification of
such approach.

4 Implementation

The above procedures have been implemented within the AISoy1 bot environ-
ment (http://www.aisoy.es). Some of the details of the model implemented
are described next, with code developed in C++ over Linux. This bot has
several sensors including a camera to detect objects or persons within a scene;
a microphone used to recognize when the user talks and understand what
they say, through an ASR component; several touch sensors to interpret when
it has been stroked or attacked; an inclination sensor so as to know whether
it is in vertical position or not; a light sensor and a temperature sensor. As
actuators, it includes some servoes that allow it to move some parts of its
body to express emotions, but it mostly uses a text-to-speech system (TTS)
combined with a led matrix to simulate its mouth when talking or express-
ing happiness or sadness. Its central led light is used to show the emotion
is experiencing at an specific moment. The information provided by these
sensors is used by the bot to detect the user and infer the users’ actions and
the environmental states.

8

4.1 Basic elements

The bot’s alternatives in A include actions for complaining, some ways of
calling the users’ attention, several options to interact with the users and a
do nothing action, as described in Fig. 2. This totals m = 15 alternatives for
the bot, with A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15} =
{cry, alert, warn, ask for help, salute, play, speak, ask for playing, ask for
charging, ask for shutting down, tell jokes, tell stories, tell events, obey, do
nothing}. For instance, the ask for help action consists of calling for an
identified user when the bot detects an unknown user within the scene or
whether it is feeling fear for some reason. Complain actions are ordered
according to their intensity: the warn action would be triggered when the
bot inferes some disgusting users’ actions; if the users keep on doing the same
action, the bot will use the alert action; and so on.

Figure 2: Bot actions

On the users’ side, set B, the bot is able to detect several users’ actions,
some of them in a probabilistic way. Indeed, the bot detects three types of
actions: affective, aggressive, and interacting actions, see Fig. 3. The bot
will also detect whether none of the users made no action. This totals n =
12 actions with B = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12} = { recharge,

9

stroke, flatter, attack, offend, move, update, speak, play, order, ignore, do
nothing }. As mentioned, we shall assume that this set is fixed, but we shall
outline in the discussion how it could be increased.

Figure 3: Users’ actions

The detection of some actions is based on simple deterministic rules. For
example, the attack action is interpreted through a detection in a touch sensor
and a variation in the inclination sensor. Others are detected according to
probabilistic rules, like those involving voice recognition and processing. We
provide a sketch of how the users’ actions are detected:

• b1 : recharge. Rule: Battery Charge < 100 % and power supply cable
connected and power supply status different from last power supply
status.

• b2 : stroke. Rule: While it is in vertical position, there is no change in
inclination at the next 2 instants and is touched during the following
2 instants.

• b3 : flatter. Rule: Detection of words within a specific set [rewards,
compliments, etc.] and detects the presence of the user or the name of
the bot.

10

• b4 : attack. Rule: There are changes in the inclination at the following
2 instants or the bot is not in vertical position.

• b5 : move. Rule: There are changes in the inclination at the following
2 instants and contact detected during the following 2 instants.

• b6 : offend. Rule: Detection of words in a specific set [insults, threats,
etc.] and detects the presence of the user or the name of the bot.

• b7 : ignored. Rule: Detects the presence of the user and there is no
response from him at the following 2 instants.

• b8 : speak. Rule: Detects the presence of the user or the name of the
bot and the user starts an speaking grammar set.

• b9 : play. Rule: Detects the presence of the user or the name of the
bot and the user asks for playing.

• b10 : order. Rule: Detects the presence of the user or the name of the
bot and the user asks for an action within a set.

• b11 : do nothing. Rule: Detects the presence of the user and the user
does not do any of the defined actions and the bot is in vertical position.

• b12 : update. Rule: Detects a difference in the software version when
the bot is rebooted.

Regarding the environment, the bot may recognize, through its sensors,
contextual issues such as the presence of noise or music, the level of darkness,
the temperature, or its inclination, as described below.

4.2 Forecasting model

We describe now how we have implemented the relevant forecasting models.
Dt will designate the data available until time t.

11

4.2.1 The classical conditioning model

This model forecasts the users’ actions based on the agent action for each
Bu. We shall use a matrix-beta model for such purpose [20]. For each at, the
prior distribution will be Dirichlet, so that

p(bt | at = aj, Bu) ∼ Dir(βu1j, . . . , β
u
nj), bt ∈ {b1, b2, ..., bn}.

Now, if huij designates the number of occurrences of user Bu doing bi, when
the bot has made aj, the posterior distribution will be

p(bt | at = aj, Dt, Bu) ∼ Dir(βu1j + hu1j, . . . , β
u
nj + hunj), bt ∈ {b1, b2, ..., bn}.

When necessary, we may summarize it through its average

p̂uij =
βuij + huij∑
i(β

u
ij + huij)

, i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}.

The required data will be stored in the matrix structure,

βt11 = β11 + h11 · · · βt1m = β1m + h1m

...
...

...
...

...
...

βtn1 = βn1 + hn1 · · · βtnm = βnm + hnm
βt(n+1)1 =

∑n
i=1(βi1 + hi1) · · · βt(n+1)m =

∑n
i=1(βim + him)

whose last row accumulates the sum of row values for each column. There will
be one of these structures for each user. At each time instant, we shall incre-
ment the corresponding ij-th element of the matrix and the corresponding el-
ement of the last row: if the sequence is aj, bi, we shall update β

u(t+1)
ij = βutij +1

and β
u(t+1)
(n+1)j = βut(n+1)j + 1, with the rest of entries satisfying β

u(t+1)
ij = βutij .

Since we expect lots of data, the terms βuij will not matter that much
after a while. Thus, we shall use the following prior assessment: if a pair of
actions at = aj and bt = bi are compatible, we shall make βuij = 1; otherwise,
we shall make βuij = 0.

12

4.2.2 The users’ model

We provide now our forecasting model for the current users’ action based
on what the users have done two time steps before. As before, we use a
matrix-beta model for each user, assuming that bt−1 and bt−2 are associated
with the same user. For i, j ∈ {1, 2, . . . , n}, we have a priori

p(bt | bt−1 = bi, bt−2 = bj, Bu) ∼ Dir(βu1ij, . . . , β
u
nij), bt ∈ {b1, b2, ..., bn}.

If hukij designates the number of occurrences that the user Bu did bk after
having done bi and bj, we have that the posterior is

p(bt | bt−1 = i, bt−2 = j,Dt, Bu) ∼ Dir(βu1ij+hu1ij , . . . , βunij+hunij), bt ∈ {b1, b2, ..., bn},

which we may summarize, when needed, through

p̂kij =
βukij + hukij∑
k(β

u
kij + hukij)

, k ∈ {1, 2, ..., n}.

The data structure used to store the required information will consist of a
three-dimensional matrix as in Fig. 4, and there will be one for each user
Bu.

Figure 4: Users’ model cube

As before, at each time instant, we update the corresponding kij-th element
and the corresponding last row of the cube. The βkij’s elements are assessed
as above.

13

4.2.3 Model averaging

We describe now how model averaging and updating takes place within our
model. First, recall that we shall use

p(bt | at, bt−1, bt−2, Dt, Bu) =

= p(M1 | Dt, Bu)p(bt | at, Dt, Bu) + p(M2 | Dt, Bu)p(bt | bt−1, bt−2, Dt, Bu),

with

p(Mi | Dt, Bu) =
p(Dt |Mi, Bu)p(Mi | Bu)∑2
i=1 p(Dt |Mi, Bu)p(Mi | Bu)

, i = 1, 2.

Under the assumption p(M1 | Bu) = p(M2 | Bu) = 1
2
,

p(Mi | Dt, Bu) =
p(Dt |Mi, Bu)∑2
i=1 p(Dt |Mi, Bu)

,

with

p(Dt |Mi, Bu) =

∫
p(Dt | θi,Mi, Bu)p(θi |Mi, Bu)dθi

We provide now the computations for our models:

• M1. We have

p(Dt |M1, Bu) =

∫
. . .

∫ (∏
i,j

pij
huij

)
k

(∏
i,j

pij
βu
ij−1

)
dpij,

where k is the corresponding normalization constant. Simple compu-
tations lead to

p(Dt |M1, Bu) =

[∏n
i=1 Γ(βui1)

Γ(
∑n

i=1 β
u
i1)

. . .

∏n
i=1 Γ(βuim)

Γ(
∑n

i=1 β
u
im)

]
×

×
[

Γ(
∑n

i=1(β
u
i1 + hui1))∏n

i=1 Γ(βui1 + hui1)
. . .

Γ(
∑n

i=1(β
u
im + huim))∏n

i=1 Γ(βuim + huim)

]
.

Now, if we write

14

p(Dt |M1, Bu) = p1ut ,

we can see that, if at iteration t+ 1 the bot performed aj and user Bu

performed bi, the new model probability is updated to

p1ut+1 = p1ut ×
βut(n+1)j

βutij

• M2. We have

p(Dt |M2, Bu) =

∫
. . .

∫ (∏
i,j,k

pijk
huijk

)
k′

(∏
i,j,k

pijk
βu
ijk−1

)
dpijk

where k′ is the appropriate normalisation constant. Simple computa-
tions lead to

p(Dt |M2, Bu) =

[
n∏
i=1

Γ(βui11)

Γ(βui11 + hui11)
. . .

n∏
i=1

Γ(βuinn)

Γ(βuinn + huinn)

]
×

×
[

Γ(
∑n

i=1(β
u
i11 + hui11))

Γ(
∑n

i=1 β
u
i11)

. . .
Γ(
∑n

i=1(β
u
inn + huinn))

Γ(
∑n

i=1 β
u
inn)

]
.

Again, we may write the result recursively as follows. If we designate

p(Dt |M2, Bu) = p2ut ,

then,

p2ut+1 = p2ut ×
βut(n+1)jk

βutijk
,

assuming that, at iteration (t + 1), the user Bu performed bk, after
having performed bi and bj.

15

4.2.4 User identification p(Bu)

This is based on standard face recognition models using OpenCV libraries.
We use the eigenface algorithm of recognition, see [9]. It consists on two
phases: learning and recognition. In the first phase, it receives one or more
face images (training images) for each user that is going to be recognized.
In the second phase, once a face image is provided, it looks for the “closest“
training face image and, if the distance is above a threshold, it assumes
that person is recognized. Otherwise, the face is classified as an ”unknown”
person. We consider, thus, that the user is that which maximizes p(Bu|Dt)
after obtaining an image of the face of the participant, assuming that such
quantity is big enough.

4.2.5 The environment model

We describe now the environment model. For illustrative purposes, we shall
just consider four environmental variables, et = (e1t , e

2
t , e

3
t , e

4
t), so that:

• e1t , refers to energy level at time t.

• e2t , refers to temperature at time t.

• e3t , refers to inclination at time t.

• e4t , refers to noise at time t.

We assume conditional independence for the four environmental variables,
so that

p(et | bt, et−1, et−2) =
4∏
i=1

p(eit | bt, eit−1, eit−2).

We describe now the evolution models for each of the environmental variable.

Energy level model We shall assume that p(e1t | bt, e1t−1, e1t−2) = p(e1t |
bt, e

1
t−1). We just need to know the current energy level and the action of the

users (whether they just plugged in or not the bot) to forecast the energy
level, or whether the bot is on charge or not. Indeed, we have that

• If bt 6= b1 = recharge and the wire is unplugged, e1t = e1t−1 − k1∆t,
where k1 is the energy consumption rate.

• If bt = b1 = recharge or the wire is plugged in, e1t = e1t−1 +k2∆t, where
k2 is the energy recharging rate.

16

Temperature model We shall assume that p(e2t | bt, e2t−1, e2t−2) = p(e2t |
e2t−1, e

2
t−2), as we are not able to detect the actions of the user concerning

temperature changes. We shall assume a simple model such as e2t = [e2t−1 +
(e2t−1 − e2t−2)]∆t.

Inclination model We shall assume the generic model p(e3t | bt, e3t−1),
being bt = attack, the relevant user action. The inclination sensor detects
only whether (1) or not (0) the bot is in vertical position. Then, we use the
evolution matrix shown in Table 1.

e3t−1 Attack Not attack
0 0 0
1 0 1

Table 1: Evolution of being in vertical position

Noise model We shall assume that p(e4t | bt, e4t−1, e4t−2) = p(e4t | e4t−1, e4t−2),
as we are not able to detect the actions of the user concerning noise changes.
We shall assume that e4t = e4t−1 + (e4t−1 − e4t−2)∆t.

4.3 Multiobjective preference model

We describe now the preference model embedded in our agent.

4.3.1 Basic preference structure

The bot aims at satisfying five objectives, which, as in [15], are ordered
hierarchically by importance, as shown in Fig. 5. They are:

• A primary objective concerning being properly charged.

• A secondary objective concerning being secure.

• A third objective concerning being taken into account by the users.

• A fourth objective concerning being accepted by the users.

• A fifth objective concerning being updated.

17

Figure 5: Objectives’ pyramid

The hierarchy entails that once the bot has attained a sufficient value in a
lower level objective it may devote resources to higher level objectives. This
is reflected in the weights of the component utility functions. We describe
now such functions.

4.3.2 Component utility functions

Energy The most basic objective pays attention only to the energy level.
The bot aims at having a sufficient energy level to perform its activities.
A very low energy level is perceived as bad by the bot. A sufficiently high
energy level is good for the bot. We represent it through

u1(ene) =

0, if ene ≤ lth

1, if ene ≥ uth

(ene−lth
uth−lth), otherwise,

with uth = 0.5 and lth = 0.1

18

Security The second objective refers to security. It essentially takes into
account whether the bot is being attacked by any user and whether it is
functioning at a proper temperature. Secondarily, it pays attention to having
appropriate light and noise levels in the room. It is represented through

u2(attack, temp, light, noise) =

= w21× u21(attack) +w22× u22(temp) +w23× u23(light) +w24× u24(noise),

with w2i ≥ 0,
∑4

i=1w2i = 1, and weights ordered in importance as follows:
w21 > w22 > w23 > w24.

The component utility functions are

u21(attack) =

0, if no attack happened

1, otherwise,

u22(temp) =

0, if temp < lth or temp > uth

1, if ltcth < temp or < utcth

1− (ltcth−templtcth), if temp < ltcth

uth−temp
uth−utcth , if temp > utcth,

with lth = 0◦ C, uth = 35◦ C, ltcth (lower thermal comfort) = 20◦ C and
utcth (upper thermal comfort) = 25◦ C.

u23(light) =

0, if light > uth

1, if llcth < light < ulcth

1− (llcth−lightllcth), if light < llcth

(uth−lightuth−ulcth), if light > ulcth,

19

with uth = 2000 lux, llcth (lower lighting comfort) = 200 lux and ulcth
(upper lighting comfort) = 1000 lux.

u24(noise) =

0, if noise > uth

1, if noise < lth

1− (noise−lthuth−lth), otherwise

with lth = 70 dB and uth = 130 dB.

Be taken into account The third objective is related with being taken
into account by the users. It evaluates whether some of the owners are around
it and whether they are interacting with it by asking the bot to play, ordering
something, starting a conversation or, simply, not ignoring it. We represent
it through the component utility function

u3(interaction, detection) = w31 × u31(interaction) + w32 × u32(detection),

with w3i ≥ 0,
∑2

i=1w3i = 1, and weights ordered in importance as follows:
w31 >> w32.

We further decompose u31 as follows:

u31(interaction) = w311 × u311(not ignored) + w312 × u312(be spoken)+

+w313 × u313(asked to play) + w314 × u314(be ordered),

with w31i ≥ 0,
∑4

i=1w31i = 1, and weights ordered in importance as follows:
w311 > w312 > w313 > w314. The corresponding component utility functions
are:

u311(not ignored) =

1, if bt 6= ignored

0, otherwise,

u312(be spoken) =

1, if a grammar has been initiated

0, otherwise,

u313(asked to play) =

1, if it is asked to play by the users

0, otherwise,

20

u314(being ordered) =

1, if it receives an order

0, otherwise,

Being ordered, asked to play or be spoken are evaluated through an ASR
algorithm. With respect to u32, we shall use

u32(detection) =
voice+ vision

total

being voice the % of voice recognition obtained by the ASR algorithm, vision
the % of face recognition resulting from the OpenCv algorithm [9] and total
the maximum possible value of the sum of voice and vision (200).

Being accepted The fourth objective is aimed at evaluating whether the
bot is being accepted by the users, checking its emotional state and whether
it is having fun with some of the users. It is represented through

u4(fun, emotional outcome) = w41×u41(fun)+w42×u42(emotional outcome),

with w4i ≥ 0,
∑2

i=1w4i = 1, and weights ordered as: w41 > w42.
Regarding u41(fun) we decompose it into

u41(fun) = w411 × u411(play) + w412 × u412(flatter) + w413 × u413(stroke),

with w41i ≥ 0,
∑3

i=1w41i = 1, and weights ordered in importance as follows:
w411 > w412 > w413. The component utility functions are:

u411(play) =

1, if bt = play

0, otherwise,

u412(flatter) =

1, if bt = flatter

0, otherwise,

u413(stroke) =

1, if bt = stroke

0, otherwise,

21

for t, t− 1 and t− 2.

u42(emotional outcome) =

1, if

∑
t positive emotions >

∑
t negative emotions

∑
t negative emotions −

∑
t positive emotions∑

t emotions
, otherwise

for t, t− 1 and t− 2.

Being updated Finally, in the fifth level objective the bot is looking for-
ward to being updated. Our current implementation of such component
utility function is

u5(updated) =

1, if bot′s version date′s < 2 months ago

0, otherwise,

Global utility function The bot will evaluate the impact of that action
on its objectives, based on the objective tree in Fig. 6, which includes the
corresponding attributes and, consequently, the relevant sensors.

Based on these five level objectives, the global utility function would be

w1×u1(ene)+w2×u2(attack, temp, light, noise)+w3×u3(detection, interaction)+

+w4 × u4(emotional outcome, fun) + w5 × u5(cooperation, updated),

with w1 >> w2 >> w3 >> w4 >> w5 and w1 + w2 + w3 + w4 + w5 = 1, to
stress the hierarchical nature of the objectives.

4.4 Emotional models

Emotional models are based on [8], who compare different appraisal models to
obtain the intensity of an emotion, favouring weighted variations of expected
utility models.

Despite the abundance of basic emotions in the literature, we have decided
to simulate two positive emotions (joy and hope) and two sad emotions (sad
and fear). We recalibrated the models in [8] to get a better fit with our bot.

22

Figure 6: Objectives hierarchy

The evolution of emotions is modulated based on the decision field theory
difference equations in [28]. Mixture of emotions is built as in [6] and the
impact of emotions on weights is dealt with as in [29]. Emotions depend on
the perceived user Bu.

4.5 Optimising expected utility

The model is implemented in an asynchronous mode. Sensors are read at
fixed times (with different timings for different sensors). When relevant
events are detected, the basic information processing and decision making
loop, described in Fig. 1, is shot. It is managed by exception in that if ex-
ceptions to standard behavior occur, the loop is open to interventions through
various threads. Given the processor in our bot, and the need to have al-
most instant responses, we plan only one step ahead and choose the action
with probabilities proportional to the computed expected utilities, to cater
for some variety. Memory is limited to the two previous instants. See the

23

videos [24] and [25] for some demonstration of the behavior.

5 Discussion

We have described a behavioral model of an affective agent facing several in-
telligent adversaries using multi-attribute decision analysis at its core, com-
plemented by forecasting models of the adversaries (Adversarial Risk Anal-
ysis) and emotion-based behavior (Affective Decision Making). We have
implemented the model in a eduitainment bot. Improving user’s experience
when interacting with a bot, [3] or [13], was our motivation for this model,
but we have realized that it may find many other potential applications in
fields like interface design, e-learning, entertainment or as therapeutical de-
vices through artificial pets for the elderly or kids with cognitive problems.

As future work, we are thinking about extending the model to a case in
which the agent cooperates or competes, depending on its emotional state,
with other agents looking to accomplish a social goal. Dealing with the
possibility of learning about new users’ actions, based on repeated readings,
and, consequently, augmenting the set B is another challenging problem.
Also, we contemplate incorporating addtional emotions. Finally, we have
used what is termed a 0-level ARA analysis. We could try to undertake
higher ARA levels in modeling the performance of adversaries.

Acknowledgments

Research supported by grants from the MICINN project RIESGOS, the
RIESGOS-CM project and the INNPACTO project HAUS. We are grate-
ful to discussion with Diego Garcia, from AISoy Robotics, Jesus Rios, from
IBM Research and David Banks, from Duke University.

References

1 Banks, D., Petralia, F., Wang, S. (2011), Adversarial risk analysis: Borel
games. Applied Stochastic Models in Business and Industry, 27: 72-86.

2 Bellman, R. (1957) Dynamic Programming. Princeton University Press,
Princeton, NJ.

24

3 Breazeal, C. (2002) Designing Sociable Robots. The MIT Press.

4 Clemen, R.T., Reilly, T. (2004) Making Hard Decisions with Decision
Tools. Duxbury: Pacific Grove, CA.

5 Damasio, A. R. (1994) Descartes’ Error: Emotion, Reason, and the Hu-
man Brain. New York: G.P. Putnam.

6 El-Nasr, M.S., Yen, J., Ioerger, T.R. (2000) FLAME: Fuzzy Logic Adap-
tive Model of Emotions. Autonomous Agents and Multi-Agent Systems
3(3):219-257.

7 Glimcher, P. W., Camerer, C., Poldrack, R. A., Fehr, E. (2008). Neuroe-
conomics: Decision Making and the Brain, Academic Press.

8 Gratch, J., Marsella, S., Wang, N., Stankovic, B. (2009) Assessing the va-
lidity of appraisal-based models of emotion. In Pantic, M., Nijholt, A.,
Cohn, J. (eds.), Proceedings of the International Conference on Affec-
tive Computing and Intelligent Interaction. Amsterdam, Netherlands,
ACII’09: IEEE Computer Society Press.

9 Hewitt, R. Seeing With OpenCV, Part 4: Face Recognition With Eigen-
face. SERVO Magazine, April 2007. Retrieved September 16, 2010,
from: www.cognotics.com/opencv/servo2007series/part4/index.html.

10 Hoeting, J., Madigan, D., Raftery, A., Volinsky, C. (1999) Bayesian
model averaging: A tutorial, Statistical Science, 4, 382-417.

11 Kadane, J. B. (2011). Adversarial Risk Analysis: What’s new, what
isn’t?: Discussion of Adversarial Risk Analysis: Borel Games. Jour-
nal Applied Stochastic Models in Business and Industry, 27, 2 (March
2011), 87-88.

12 Kadane, J. B., Larkey, P. D. (1982) Subjective probability and the theory
of games. Management Sci 28(2):113-120.

13 Kirby, R., Forlizzi, J., Simmons, R. (2010) Affective social robots. Robotics
and Autonomous Systems 58 3:322-332.

14 Loewenstein, G.(1996) Out of Control: Visceral Influences on Behavior.
Organizational Behavior and Human Decision Processes, 65(3):272-
292. Carnegie Mellon University.

25

15 Maslow, A. H. (1943) A theory of human motivation. Psychological Re-
view, 50, 4, 370-96.

16 Paté-Cornell, M. E. and Guikema, S. O. (2002). Probabilistic Modeling of
Terrorist Threats: A Systems Analysis Approach to Setting Priorities
Among Counter-measures. Military Operation Research, 7, 5-23.

17 Picard, R. W. (1997) Affective Computing. Cambridge, MA: MIT Press

18 Raiffa, H. (2007) Negotiation Analysis: The Science and Art of Collab-
orative Decision Making. Cambridge, Massachusetts:Belknap Press of
Harvard University Press

19 Ŕıos Insua, D., Rı́os, J., Banks, D. (2009) Adversarial risk analysis. Jour-
nal of the American Statistical Association 104(486):841-854.

20 Ŕıos Insua, D., Ruggeri, F., Wiper, M. (2012) Bayesian Analysis of
Stochastic Process Models, Wiley.

21 Ŕıos Insua, D., Salewicz, K. (1995) The operation of Kariba Lake: a mul-
tiobjective decision analysis. Journal of Multicriteria Decision Analy-
sis, 1995, 4, 203-222.

22 Stahl, D. O. and Wilson, P. W. (1995). On Players Models of Other
Players: Theory and Experimental Evidence. Games and Economic
Behavior, 10(1): 218254.

23 Velásquez, J. D. (1997) Modeling Emotion and Other Motivations in
Synthetic Agents. Proceedings, 14th National Conference on AI, AAAI
Press.

24 Youtube video: http://youtu.be/No7MqxUONRs.

25 Youtube video: http://youtu.be/HVJUtLxWKw4.

26 West, M., Harrison, P. J. (1997) Bayesian Forecasting and Dynamic Mod-
els. New York: Springer.

27 von Winterfeldt, D., Edwards, W. (1986). Decision Analysis and Behav-
ioral Research. New York: Cambridge University Press.

26

28 Busemeyer, J. R., Dimperio, E., Jessup, R. K. (2006) Integrating emo-
tional processes into decision-making models in Gray (Ed.) Integrated
models of cognitive systems, Oxford University Press.

29 Sribhashyam, S., Montibeller, G. (2012) Modeling State - Dependent
Priorities of Malicious Agents. To appear in Decision Analysis.

27

