S. Sotoca López, M. Jerez Méndez, J. Casals Carro, A. García Hiernaux

Computing the gaussian likelihood for a nonstationary state-space model is a difficult problem which has been tackled within the literature using two strategies: data transformation and diffuse likelihood. The data transformation approach is cumbersome, as it requires nonstandard filtering. On the other hand, in some nontrivial cases the diffuse likelihood value depends on the scale of the diffuse states, so one can obtain different likelihood values corresponding to different observationally equivalent models. In this paper we discuss the properties of the minimally-conditioned likelihood function, as well as two efficient methods to compute its terms with computational advantages for specific models. Three convenient features of the minimally-conditioned likelihood are: (a) it can be computed with standard Kalman filters, (b) it is scale-free, and (c) its values are coherent with those resulting from differencing, this being the most popular approach to deal with nonstationary data.

Palabras clave: state-space models, conditional likelihood, diffuse likelihood, diffuse initial conditions, kalman filter, nonstationarity

Fichero de la comunicación:

Programado

JC5 Series temporales 1
19 de abril de 2012  12:00
Sala Viena


Otros trabajos en la misma sesión


Últimas noticias

  • 22/04/12
    Certificados
  • 11/03/12
    Programa del congreso
  • 11/03/12
    Cuota reducida
  • 15/01/12
    Cuota superreducida

Organizan

Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.